

Operating Instructions

induSENSOR DTD / MSC7401 / 7802 / 7602

 MSC7401
 MSC7602

 MSC7401(0x0)
 DTD

 MSC7802(0x0)
 DTD

Miniature sensor controller for inductive displacement sensors

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Koenigbacher Str. 15

94496 Ortenburg / Germany

Phone +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 e-mail info@micro-epsilon.com www.micro-epsilon.com

Contents

1. 1.1 1.2 1.3 1.4 1.5	Safety Symbols Used Warnings Notes on CE Marking Intended Use Proper Environment	
2.	Functional Principle, Technical Data	
2.1	Functional Principle	10
2.2	Structure	
2.3	Technical Data	
3	Delivery	14
3.1	Unnacking/Included in Delivery	
3.2	Storage	
0.2		
4.	Installation and Assembly	
4.1	Precautions	15
4.2	Controller	
	4.2.1 DTD Model	
	4.2.2 MSC/401 Model	
	4.2.3 MSC/802 Model	
10	4.2.4 MSC/002 MODEL	
4.3	Power Supply, Sensor and Signal Output MSC7401	20 27
7.7	4 4 1 Power Supply and Signal	
	4.4.2 Digital Interface	
	4.4.3 Sensor	
4.5	Power Supply, Sensor and Signal Output MSC7802	
	4.5.1 Power Supply and Signal	
	4.5.2 Digital Interface	
	4.5.3 Sensor	
4.6	Power Supply, Sensor and Signal Output MSC7602	
	4.6.1 Power Supply and Signal	
	4.0.2 Sensor	
	4.0.3 Digital Interface	

5.	Operation	45
5.1	Initial Operation	. 46
5.2	Control and Display Elements	. 48
5.3	Setting	. 49
	5.3.1 Automatic Sensor Recognition	. 50
	5.3.2 Signal	. 50
	5.3.3 Sensor Parameters	. 51
	5.3.4 Adjustment	. 52
5.4	Menu Structure	. 53
	5.4.1 Two-point Adjustment	. 56
	5.4.2 Zero-point Adjustment	. 57
	5.4.3 Example A: Sensor Parameter Adjustment: DIA-SG8, Channel 1	. 58
	5.4.4 Example B: Signal Output Adjustment: 2 10 v, Channel 1	. 59
	5.4.5 Example C: Adjustment via Zero-point Adjustment, Channel 1	. 60
E E	5.4.6 Example D: Adjustment via Two-point Adjustment, Channel T	.01
5.5	Multi-Champer Operation on the PS185 Rus with Multiple Chappele	. 02
	5.5.1 Operation of the h5405 bus with Multiple Channels	. 03
		. 05
6.	Service, Repair	67
7.	Disclaimer	68
_		
8.	Decommissioning, Disposal	69

Appendix

A 1	Optional Accessories	70
A 2	Factory Settings	72
A 3	Software	73
A 3.1	Controller Search	73
A 3.2	Configure Baudrate	74
A 3.3	Menu Settings	75
	A 3.3.1 General	75
	A 3.3.2 Output	77
	A 3.3.3 Adjustment	
	A 3.3.3.1 Two-point Adjustment	
	A 3.3.3.2 Zero-point Adjustment	
A 3.4	Measurement Menu	
	A 3.4.1 Data Acquisition	
	A 3.4.2 Signal Processing	
	A 3.4.3 CSV Output	
A 0 F	A 3.4.4 Description Data Acquisition Table	
A 3.5	Single value Menu	
A 3.0	Into Menu	
A 3.7	Multi-Sensor DAQ Mode	
Δ 4	Communication via BS485 Digital Interface	97
A 4 1	General	
A 4.2	Hardware Configuration	
A 4.3	Protocol	
A 4.4	Commands	
	A 4.4.1 Identification	
	A 4.4.2 Assign New Address	
	A 4.4.3 Reset	
	A 4.4.4 Get Measuring Value	

induSENSOR DTD / MSC7xxx

1. Safety

Sensor operation assumes knowledge of the operating instructions.

1.1 Symbols Used

The following symbols are used in these operating instructions:

Indicates a hazardous situation which, if not avoided, may result in minor or moderate injury.

Indicates a situation that may result in property damage if not avoided.

Indicates a tip for users.

Measurement Indicates hardware or a software button/menu.

1.2 Warnings

Connect the power supply and the display/output device according to the safety regulations for electrical equipment.

> Risk of injury

1

> Damage to or destruction of the controller and/or the sensor

NOTICE

Avoid shocks and impacts to the sensor and controller.

> Damage to or destruction of the controller and/or the sensor

The supply voltage must not exceed the specified limits.

> Damage to or destruction of the controller and/or the sensor

Protect the sensor cable against damage.

> Destruction of the sensor

> Failure of the measuring device

No sharp or heavy objects should be allowed to affect the cables. Avoid folding the cables.

> Damage or destruction of the cable, failure of the measuring device

1.3 Notes on CE Marking

The following apply to the induSENSOR DTD / MSC7401 / 7802 / 7602 series:

- EU Directive 2014/30/EU
- EU Directive 2011/65/EU

Products which carry the CE mark satisfy the requirements of the EU directives cited and the relevant applicable harmonized European standards (EN). The measuring system is designed for use in industrial environments.

The EU Declaration of Conformity and the technical documentation are available to the responsible authorities according to EU Directives.

1.4 Intended Use

- Das induSENSOR DTD / MSC7401 / 7802 / 7602 measuring system is designed for use in industrial environments. It is used to control inductive displacement sensors based on the LVDT principle (Linear Variable Differential Transformer) and for operation with LDR displacement sensors.
- The system must only be operated within the limits specified in the technical data, see 2.3.
- The system must be used in such a way that no persons are endangered or machines and other material goods are damaged in the event of malfunction or total failure of the system.
- Take additional precautions for safety and damage prevention in case of safety-related applications.

1.5 Proper Environment

- Protection class (only controller):
 - DTD: IP67 (plugged)
 - MSC7401 and 7802: IP67 (plugged)
 - MSC7602: IP20
- Temperature range:
 - Operation: -40 ... +85 °C (-40 ... +185 °F)
 - Storage: -40 ... +85 °C (-40 ... +185 °F)
- Humidity: 5 ... 95 % (non-condensing)
- Ambient pressure: Atmospheric pressure
- Shock: EN 60068-2-27
- Vibration: EN 60068-2-6

2. Functional Principle, Technical Data

2.1 Functional Principle

The DTD / MSC 7401 / 7802 / 7602 series are single- and multi-channel miniature sensor controllers for the operation of inductive displacement sensors based on the LVDT principle (full bridge) and for half-bridge sensors.

An electronic oscillator supplies the primary coil with an alternating current of constant frequency and amplitude. For optimal control of the respective sensors, the frequency and the supply voltage can be set, see 5.

The demodulator electronics transforms the signal of the two (secondary) coils into the set output signal. With the setting possibilities for zero point and gain, the user can adapt the equipment to the task to be performed, see 5.

The output signal increases, when the plunger is moved into the sensor. If the reverse effective direction is required (i.e. the signal becomes smaller when the plunger is inserted), replace the connections Secondary + and Secondary -, or make the according setting in the controller, see 5.3.4.

Fig. 1 Measuring principle

2.2 Structure

A complete measuring channel consists of

- Sensor and controller (DTD, MSC7401 model)
- Two sensors and controllers (MSC7802 / 7602 models)
- Sensor cable
- Supply and output cable

Any type of half-bridge and full-bridge sensors can be connected to the amplifier electronics. However, if sensors of other manufacturers are used you should check their functionality in conjunction with the controller. MICRO-EPSILON recommends the inductive displacement sensors and gauging sensors of the induSENSOR DTA and LDR series because they are optimally adjusted with the controller.

2.3 Technical Data

Model		DTD	MSC7401	MSC7802	MSC7602	
Resolution ¹	DTA series					
	LDR series	-	12 11	bit (0.024 % FSO) with 5 bit (0.048 % FSO) with 30	0 Hz)0 Hz	
Frequency respo	onse (-3 dB)		300 Hz (adjustab	ole only via software)		
Linearity			≤ ±0.	02 % FSO		
Temperature	DTA series		≤ 100 p	pm FSO / K		
stability	LDR series	-		\leq 125 ppm FSO / K		
Supply voltage			14 30 VDC	C (5 30 VDC ²)		
Max. current con	sumption	40	0 mA	80) mA	
Input impedance	3	-		> 100 kOhm		
Digital interface		RS485 / PROFIN Ethernet ⁴	CFINET 4 / EtherNet/IP 4 / RS485 / PROFINET 4 / EtherNet/IP 4 ernet 4 / EtherCAT 4 RS485 / PROFINET 4 / EtherNet/IP 4			
Analog output 25			(0)2 … 10 V; 0.5 … 4.5 V; 0 … 5 V (<i>R</i> _a > 1 kOhm) or 0(4) … 20 mA (load < 500 Ohm)			
		Supply / signal: 5-pin M12 plug-in	Sensor: screw terminal AWG 16 up to AWG 24; with ferrule up to AWG 28 or 5-pin M9 connector		Sensor: screw terminal AWG 16 up to AWG 28 Supply/signal:	
Connection		optional accessories, see A 1)	Supply/signal: screw terminal AWG 16 up to AWG 24; with ferrule up to AWG 28 or 5-pin M12 connector (cable, optional accessories, see A 1)		screw terminal AWG 16 up to AWG 28 Supply/Sync/RS485: Mountain rail bus connector	
Installation		Circumferential clamping ⁶	2 x mounting holes for M4		DIN rail 35 mm	
Temperature	Storage		-40 +85 °C (-40 185 °F)			
range	Operation		-40 +85 °C (-40 185 °F)			

Modell	DTD	MSC7401	MSC7802	MSC7602		
		5 g / 6 ms in 6 axes,				
Shook (DIN EN 60068 2.27)	40 g / 6 ms in 1	1000 shocks each				
SHOCK (DIN-EN 00000-2-27)	100 g / 5 ms	in 3 axes, 2 directions and	l 9 shocks each	15 g / 11 ms in 6 axes,		
				10 shocks		
				±2 mm / 10 15.77 Hz		
Vibratian (DIN EN 60068 0.6)	±1.5 mm	/ 5 57 Hz in 3 axes, 10	cycles each	in 3 axes, 10 cycles each		
VIDIATION (DIN-EN 00000-2-0)	±20 g / 5	7 500 Hz in 3 axes, 10	cycles each	±2 g / 15.77 2000 Hz		
			-	3 axes, 10 cycles each		
Protection class (DIN-EN 60529)		IP20				
Material	Stainless steel	Aluminum	die casting	Polyamide		
Weight	approx. 50 g	approx. 200 g	approx. 280 g	approx. 120 g		
Compatibility	Full-bridge sensor/					
Compatibility	LVDT (DTA series)	ruil-bridge sensor/LVD1 (DTA series) and half-bridge sensor (LDR series)				
No. of measurement channels	1	1	2	2		
Power supply protection		Reverse polarity protect	tion, overvoltage protecti	on		
	Preset at factory. -550 mV_{pp} , 350 mV $_{pp}$, 150 mV $_{pp}$, 75 mV $_{pp}$					
Sensor excitation '	cannot be changed 1, 2, 5, 10, 13 kHz (DTA) / 9, 13, 16, 21, 23 kHz (LDR)					
Gain	Determination by 2 points of a straight line of the output signal with respect to the target position.					
	The distance between the two points must be greater than 10 % of the measuring range.					
Zero	Adjustable via buttons (MSC series) and software (all series)					
EMC	DIN EN 61326-1: DIN EN 61326-2-3					

FSO = Full scale Output

1) Noise: AC RMS measurement via RC low-pass filter of the 1st order with $f_c = 5 \text{ kHz}$

2) $V_{+} = 5$ V: no voltage output available; current output: max. load 100 Ω ; $V_{+} = 9$ V: voltage output: 0.5 V ... 4.5 V or 0 V ... 5 V; current output: max. load 250 Ω

3) Sensor side

4) Connection via interface module, optional accessories, see A 1

5) With controllers including a current output, the output signal is limited to approx. 21 mA.

6) Mounting clamp included in delivery, see 3.1

7) Adjustable via buttons; via software, additional steps can be adjusted under frequency.

induSENSOR DTD / MSC7xxx

3. Delivery

3.1 Unpacking/Included in Delivery

1 Controller

1 Assembly instruction

1 Mounting bracket (for induSENSOR model DTD)

2 Sleeve-shaped ferrites and 2 fastening clips for M4 screw (with induSENSOR MSC7602 model)

- Carefully remove the components of the measuring system from the packaging and ensure that the goods are forwarded in such a way that no damage can occur.
- Check the delivery for completeness and shipping damage immediately after unpacking.
- If there is damage or parts are missing, immediately contact the manufacturer or your supplier.

Optional accessories are listed in the appendix, see A 1.

3.2 Storage

Temperature range (storage):	-40 +85 °C (-40 +185 °F)
Humidity:	5 95 % (non-condensing)

4. Installation and Assembly

4.1 Precautions

No sharp or heavy objects should be allowed to affect the cable sheath of the sensor cable or the supply/output cable. Avoid folding the cables

> Damage to or destruction of the sensor cable and/or controller

Do not bend more tightly than the minimum bending radius of the cables.

> Damage or destruction of the cables

> Failure of the measuring device

Check all plug-in connections for firm seating before starting operation.

Ensure careful handling during installation and operation.

In addition with the DTD model:

Avoid cyclic movements of the crimps and ferrite of the sensor cable. In the case of cyclic movements (e.g. use in a drag chain), fix the sensor cable additionally with suitable means.

4.2 Controller

4.2.1 DTD Model

When mounting the controller, use the mounting clamp included in delivery, see 3.1, as well as a suitable M3 screw.

Fig. 2 Dimensional drawing of DTD controller, dimensions in mm (inches)

Fig. 3 Dimensional drawing of mounting clamp, dimensions in mm (inches)

4.2.2 MSC7401 Model

Fasten the controller of series MSC7401 by means of two M4 screws.

The position of the mounting holes is shown in the drawing, see Fig. 4.

The tightening torque for the cover screws is 0.9 Nm. The maximum tightening torque for the SW15 (M12) cable gland is 1.5 Nm and for the SW19 (M16) cable gland is 3 Nm.

NOTICE

Please note that less torque should be applied for cable glands with various cable sheath materials. > Damage to the cable sheath

Fig. 4 Dimensional drawing of MSC7401 controller, dimensions in mm (inches)

Fig. 5 Dimensional drawing of MSC7401(010) controller, dimensions in mm (inches)

4.2.3 MSC7802 Model

Fasten the controller of series MSC7802 by means of two M4 screws, see Fig. 6.

The position of the mounting holes is shown in the drawing, see Fig. 6.

The tightening torque for the cover screws is 0.9 Nm. The maximum tightening torque for the SW15 (M12) cable gland is 1.5 Nm and for the SW19 (M16) cable gland is 3 Nm.

NOTICE

Please note that less torque should be applied for cable glands with various cable sheath materials. > Damage to the cable sheath

Fig. 6 Dimensional drawing of MSC7802 controller, dimensions in mm (inches)

Fig. 7 Dimensional drawing of MSC7802(010) controller, dimensions in mm (inches)

4.2.4 MSC7602 Model

- If required, install a DIN rail bus connector, e.g., ME22,5 TBUS 1,5/4P1S KMGY (Phoenix: 2201732), see A 1, onto the DIN rail.
- If required, connect the mating plug, e.g., MCVR 1.5/5-ST-3.81 (Phoenix: 1827156), see A 1, with the bus connector.
- Position the MSC7602 controller on the DIN rail and press it down until it snaps in, see Fig. 8.

Fig. 8 Installation of controller

Fig. 9 Dismantling of controller

Dismantling

- For dismantling, pull the locking element on the controller forwards, e.g., using a screwdriver (1), see
 - Fig. 9.
- Tilt the controller in order to remove it from the DIN rail (2), see Fig. 9

Fig. 10 Dimensions of MSC7602 controller model, dimensions in mm (inches)

Installation with ferrite

To stabilize the output signal against EMC interference, the sensor cables can be guided through a fastening clip with a sleeve-shaped ferrite (both included in delivery), see 3.1.

This ferrite must be mounted as close as possible to the input terminals.

Fig. 11 Installation example of induSENSOR MSC7602 with ferrite

NOTICE

Avoid applying force on the terminals and the sensor cables.

> Damage to the sensor cables and/or the controller

4.3 Power Supply, Sensor and Signal Output DTD (LVDT)

The minimum bending radius of the PC5/5-IWT power supply and output cable (available as an optional accessory, see A 1) is ten times the cable diameter.

Connection on power supply/output side: 5-pin. M12x1 housing connector, A-coded

Fig. 12 View with plug-in connector, DTD (LVDT)

Pin	Assignment	Cable color (PC5/5-IWT)	5
1	Supply voltage V_{+}	Brown	
2	RS485 - A	White	
3	GND	Blue	5-pin. M12x1 housing connector
4	Signal out	Black	M12x1 (A-coded, view on pole side)
5	RS485 - B	Gray	

Fig. 13 Table for pin assignment for power supply and signal

4.4 Power Supply, Sensor and Signal Output MSC7401

The minimum bending radius of the PC7400-6/4 and PC5/5-IWT power supply and output cables (available as optional accessories, see A 1) is ten times the cable diameter. All of the connections for the power supply/ sensors/signal output are on the controller, see Fig. 14, see Fig. 15.

Connections

- Power supply/output side:
 - Cable gland: SW19; clamping range 4.5 mm ... 10 mm
 Screw terminal connection; AWG 16 up to AWG 24; up to AWG 28 with ferrule
 - Alternatively: connector M12x1, 5-pole, A-coded
- Sensor side:
 - Cable gland: SW15; clamping range 1 mm ... 5 mm
 Screw terminal connection; AWG 16 up to AWG 24; up to AWG 28 with ferrule
 - Alternatively: female connector M9; 5-pole, series 712, Co. Binder

Fig. 14 View with cable gland, MSC 7401

Fig. 15 View with plug-in connectors, MSC 7401(010)

Wiring

The housing must be open to connect the sensors, see 4.4.3 and wire the output and power supply cable, see 4.4.1.

Loosen the screws.

Pass the sensor and signal cables through the cable glands.

Connect the cables to the terminals according to the pin assignments.

Fig. 16 Pin assignment for the sensor at terminal block X2, full bridge

Terminal block X2	Pin	Cable ¹ DTA-x-CA-x DTA-x-CR-x C701-x	Braid ¹ DTA-x-LA-x	Solder pin ¹ DTA-x-TA-x	Cable ¹ DTA-xG8-x
Shield (sensor cable)	1	Shield	-	-	Shield
Secondary center tap	2	Gray	Gray	5	Gray
Secondary +	3	White	White	1	Black
Secondary -	4	Brown	Black	2	White
Primary +	5	Green	Green	3	Blue
Primary -	6	Yellow	Yellow	4	Brown

Fig. 17 Table of the pin assignment for the sensor at terminal block X2, full bridge

1) The colors and pins listed refer to the sensors from MICRO-EPSILON MESSTECHNIK GmbH & Co. KG.

Fig. 18 Pin assignment for the sensor at terminal block X2, half bridge

Terminal block X2	Pin	Cable ¹ LDR-x-CA LVP-25-20-x	Connector LDR-x-SA	Sensor cable ¹ C7210-x
Shield (sensor cable)	1	-	-	-
Secondary center tap	2	Green	4	Black
Secondary +	3	White	1	Brown
Secondary -	4	Brown	3	Blue
Primary +	5	-	-	-
Primary -	6	-	-	-

Fig. 19 Table of the pin assignment for the sensor at terminal block X2, half bridge

The pin assignment for the terminal blocks can also be found in the graphic and the tables, see Fig. 20 ff.

1) The colors and pins listed refer to the sensors from MICRO-EPSILON & Co. KG.

Fig. 20 Pin assignment for supply and signal on the terminal blocks X2, X3, X1

Pin assignment of supply	Variant with		Connector	r variant	
and analog output	cable gland				
	X1 1 2 3 4		5-pin M12x1 housing connector		
			(A-coded;	view on pin side)	
Assignment	Pin X1	Color	5-pin	Color	
		(cable: PC7400-6/4)		(cable: PC5/5-IWT)	
Analog output	1	Yellow	4	Black	
Supply voltage	2	White	1	Brown	
GND supply/signal ground	3	Brown	3	Blue	
Shield (housing)	4	Cable shield	-	Cable shield guided over connector	
-	-	-	2	White	
-	-	-	5	Gray	

1

Fig. 21 Table for pin assignment of supply and analog output

4.4.2 Digital Interface

Fig. 22 Table for pin assignment of digital interface RS485

Use the IF7001 single-channel USB/RS485 converter for MSC7xxx available as an optonal accessory, see A 1. Do not apply the IF7001 shield!

4.4.3 Sensor

The output signal increases, when the plunger is moved into the sensor. If the reverse effective direction is required (i.e. the signal becomes smaller when the plunger is inserted), replace the connections Secondary + and Secondary -.

Sensor pin assignment (DTA/LVDT)	Variant wit cable glan	ih d	Connector		
			5-pin housing socket M9 (Binder, series 712) View on pin side		
Assignment	Pin X2	DTA-x-CA-x DTA-x-CR-x Cable C701-x	DTA-x-CA-x	DTA-xG8-x	5-pin
Shield	1	Shield	-	Shield	Housing
Secondary center tap	2	Gray	Gray	Gray	5
Secondary +	3	White	White	Black	1
Secondary -	4	Brown	Black	White	2
Primary +	5	Green	Green	Blue	3
Primary -	6	Yellow	Yellow	Brown	4

Fig. 23 Table for pin assignment of sensor (DTA/LVDT)

Sensor pin assignment (LDR)	Variant with cable gland X2 1 2 3 4 5 6			Connector
Assignment	Pin X2	LDR-x-CA LVP-25-Z20-x	Cable C7210-x	5-pin
Shield	1	-	-	Housing
Secondary center tap	2	Green	Black	5
Secondary +	3	White	Brown	1
Secondary -	4	Brown	Blue	2
Primary +	5	-	-	3
Primary -	6	-	-	4

Fig. 24 Table for pin assignment of sensor (LDR)

Cable lengths \geq 10 m between sensor and controller may impair the technical data, see 2.3.

1

4.5 Power Supply, Sensor and Signal Output MSC7802

The minimum bending radius of the PC7400-6/4and PC5/5-IWT power supply and output cables (available as optional accessories), see A 1, is ten times the cable diameter. All of the connections for the power supply/ sensors/signal output are on the controller, see Fig. 6.

Connections

- Power supply/output side:
 - Cable gland: SW19; clamping range 4.5 mm ... 10 mm
 Screw terminal connection; AWG 16 up to AWG 24; up to AWG 28 with ferrule
 - Alternatively: Connector M12x1, 5-pole, A-coded
- Sensor side:
 - Cable gland: SW15; clamping range 1 mm ... 5 mm
 Screw terminal connection; AWG 16 up to AWG 24; up to AWG 28 with ferrule
 - Alternatively: female connector M9; 5-pole, series 712, Co. Binder

Fig. 25 View with cable gland, MSC7802

Fig. 26 View with plug-in connectors, MSC7802(010)

Wiring

The housing must be open, see 4.5.3, to connect the sensors and wire the output and power supply cable, see 4.5.1.

Loosen the screws.

Pass the sensor and signal cables through the cable glands.

Connect the cables to the terminals according to the pin assignments.

Fig. 27 Pin assignment for the sensor at terminal block X2, full bridge

Terminal block X2	Pin	Cable ¹ DTA-x-CA-x DTA-x-CR-x C701-x	Braid ¹ DTA-x-LA-x	Solder pin ¹ DTA-x-TA-x	Cable ¹ DTA-xG8-x
Shield (sensor cable)	1	Shield	-	-	Shield
Secondary center tap	2	Gray	Gray	5	Gray
Secondary +	3	White	White	1	Black
Secondary -	4	Brown	Black	2	White
Primary +	5	Green	Green	3	Blue
Primary -	6	Yellow	Yellow	4	Brown

Fig. 28 Table of the pin assignment for the sensor at terminal block X2, full bridge

1) The colors and pins listed refer to the sensors from MICRO-EPSILON MESSTECHNIK GmbH & Co. KG.

Fig. 29 Pin assignment for the sensor at terminal block X2, half bridge

Terminal block X2	Pin	Cable ¹ LDR-x-CA LVP-25-20-x	Connector LDR-x-SA	Sensor cable ¹ C7210-x
Shield (sensor cable)	1	-	-	-
Secondary center tap	2	Green	4	Black
Secondary +	3	White	1	Brown
Secondary -	4	Brown	3	Blue
Primary +	5	-	-	-
Primary -	6	-	-	-

Fig. 30 Table of the pin assignment for the sensor at terminal block X2, half bridge

The pin assignment for the terminal blocks can also be found in the graphic and the tables, see Fig. 31 ff.

1) The colors and pins listed refer to the sensors from MICRO-EPSILON MESSTECHNIK GmbH & Co. KG.
4.5.1 Power Supply and Signal

Fig. 31 Pin assignment for power supply and signal on the terminal blocks X2, X3, X1

Pin assignment of supply and	Variant v	vith cable gland	Connector	^r variant
analog output	X1 1 2 3 4 5 6		2 1 5 3 4 5-pin M12x1 (A-coded); view on pin side	
Assignment	Pin X1	Color (cable: PC7400-6/4)	5-pin	Color (cable: PC5/5-IWT)
Analog output for channel 2	1	Green	2	White
Analog output for channel 1	2	Yellow	4	Black
Supply voltage	3	White	1	Brown
GND supply/signal ground	4	Brown	3	Blue
-	5	-	5	Gray
Shield (housing)	6	Cable shield	-	Cable shield guided
				over connector

Fig. 32 Table for pin assignment of supply and analog output

4.5.2 Digital Interface

Fig. 33 Table for pin assignment of digital interface RS485

Use the IF7001 single-channel USB/RS485 converter for MSC7xxx available as an optonal accessory, see A 1. Do not apply the IF7001 shield!

4.5.3 Sensor

The output signal increases, when the plunger is moved into the sensor. If the reverse effective direction is required (i.e. the signal becomes smaller when the plunger is inserted), replace the connections Secondary + and Secondary -.

Fig. 34 Table for pin assignment of sensor (DTA/LVDT)

Pin assignment	Variant wit	th cable gland	Connector	
Sensor 1 + 2 (LDR)	Sensor 1 1 2 3 4 5 6 X2-1 3 4 5 6 X2-2 1 2 3 4 5 6 Sensor 2			3 (2 4) (1 5) 5-pin housing socket M9 (Binder, series 712) View on pin side
Assignment	Pin X2-x	LDR-x-CA LVP-25-Z20-x	Cable C7210-x	5-pin
Shield	1	-	-	Housing
Secondary center tap	2	Green	Black	5
Secondary +	3	White	Brown	1
Secondary -	4	Brown	Blue	2
Primary +	5	-	-	3
Primary -	6	-	-	4

Fig. 35 Table for pin assignment of sensor (LDR)

• Cable lengths \geq 10 m between sensor and controller may impair the technical data, see 2.3.

4.6 Power Supply, Sensor and Signal Output MSC7602

The MSC7602 is designed for multi-channel operation. Therefore, power supply and RS485 must therefore be applied only to one controller and can then be transmitted to the adjacent controller via a DIN rail bus connector on the rear side.

The Sync signal is only available on the DIN rail bus connector and executed in series, i.e., it is not daisy-chained in the bus connector.

All of the connections for the power supply/sensors/signal output are on the controller, see Fig. 36 ff.

Connections:

Screw terminal connection; AWG 16 up to AWG 24; up to AWG 28 with ferrule

4.6.1 **Power Supply and Signal**

Assignment	Pin X1	Color (cable: PC7400-6/4)	
Supply voltage +24 V	1	White	V1
GND supply/signal ground	2	Brown	
Output signal 1	3	Yellow	
Output signal 2	4	Green	
Cable shield sensor 2	5	-	54521
(direct connection to DIN rail)			
			×0.0
			X2-2
			54321

Fig. 40 Table for pin assignment of supply and analog output

Assignment	Pin	2
Supply voltage +24 V	1	panamanan
Ground 0 V	2	
RS485 A	3	
RS485 B	4	
Sync-signal	5	CUPPT TO
ME22,5 TBUS 1,5/4P1S KMGY (Phoenix: 2201732) Suitable mating plug: MCVR 1.5/5-ST-3.81		1 2 3 4 5
(Phoenix: 2201732) Suitable mating plug: MCVR 1.5 (Phoenix: 1827156)	/5-ST-3.81	1 2 3 4 5

Fig. 41 Table for pin assignment of DIN rail bus connector

Sensor

4.6.2

Fig. 42 Terminal block X2-2

X2-1
1 2 3 4 5

Fig. 43 Terminal block X2-1

Assignment	Pin X2-x	DTA-x-CA-x DTA-x-CR-x Cable C701-x	DTA-x-CA-x	DTA-xG8-x
Secondary center tap	1	Gray	Gray	Gray
Secondary +	2	White	White	Black
Secondary -	3	Brown	Black	White
Primary +	4	Green	Green	Blue
Primary -	5	Yellow	Yellow	Brown
Cable shield sensor 1 + 2, see X1 and X3				

Fig. 44 Table for pin assignment sensor 1 + 2 (DTA/LVDT)

Assignment	Pin X2-x	LDR-x-CA LVP-25-Z20-x	Cable C7210-x
Secondary center tap	1	White	White
Secondary +	2	Brown	Black
Secondary -	3	Green	Green
Primary +	4	Yellow	Yellow
Primary -	5	Gray	Gray
Cable shield sensor 1	1 2 coo V1	and V2	

Cable shield sensor 1 + 2, see X1 and X3

Fig. 45 Table for pin assignment sensor 1 + 2 (LDR)

Cable lengths \geq 10 m between sensor and controller may impair the technical data, see 2.3.

4.6.3 Digital Interface

1

Assignment	Pin X3	Color (IF7001)	
A (RS485)	1	Brown	X3
B (RS485)	2	White	
-	3	-	
-	4	-	1 2 3 4 5
Cable shield sensor 1 (direct connection to DIN rail)	5	-	X2-1

Do not apply the IF7001 shield!

Fig. 46 Table for pin assignment of digital interface X3

5. Operation

Before starting the measurement or making settings, let the controller with connected sensor warm up for approx. 2 minutes while supply voltage is switched on.

Observe the operating instructions of the sensors used.

If a sensor is replaced, the channel must be re-parameterized and readjusted.

The parameter setup of the controller may either be performed via keys on the controller or via the sensor-TOOL, see A 3. The output is then via the analog outputs or the RS485 interface, see A 4 or the sensorTOOL.

Only with the induSENSOR DTD

With the induSENSOR DTD, everything is set at the factory. There are no operation elements. Settings can only be made via the sensorTOOL program.

5.1 Initial Operation

Connect the sensor before starting the controller, see 4.4.3, see 4.5.3, see 4.6.2.

- Ensure that the wiring of the sensor connections, signal cable and power supply connections are correct before connecting the controller to the power supply and turning it on, see 4.
- Then switch on the power supply.
- Set the controller to its basic setting, see 5.3.

Fig. 47 Controller induSENSOR MSC7401

Fig. 48 Controller induSENSOR MSC7802

Fig. 49 Controller induSENSOR MSC7602

5.2 Control and Display Elements

Fig. 50 Control and display elements MSC7401 ¹

Fig. 51 Control and display elements MSC7602

1) Description also applies for MSC7802 model.

Button/LED	Function	Description
Menu button	Enter the menu level	-
Enter button	Confirmation	-
$^{\uparrow}$ and $^{\downarrow}$ buttons	Parameter selection	-
LED D1 / Ch	Channel display	The LED Channel indicates the current channel, with ↑ and ↓ the channel can be changed (red and green). Channel 1: green, channel 2: red It flashes in corresponding color, if the channel is not parameterized.
LED D2 / E1	E1 menu level display	The E1 and E2 LEDs show the
LED D3 / E2	E2 menu level display	the corresponding settings.
LED D4 / Value	Value display	The Value LED indicates the current value of the selected parameters.

5.3 Setting

The menu of the MSC7401 / 7802 / 7602 is designed for fast, mainly automated commissioning as well as for individual application-specific settings. It is divided into four function blocks, see Fig. 52. The 4 LEDs show the current position in the menu and the corresponding setting value at any time, see 5.4. Alternatively, the software sensorTOOL, can be used, see A 3.

Fig. 52 Menu structure (simple), details, see 5.4

5.3.1 Automatic Sensor Recognition

The first menu item is the automatic sensor recognition.

- Please note that automatic sensor recognition is merely a support feature. Successful recognition can-
- 1 not be guaranteed on account of tolerances. As such, the recognition result must always be checked.

LED D2 = red

The automatic sensor recognition checks the connected sensor and determines the parameters for the common MICRO-EPSILON sensors:

- Sensor type (half bridge or full bridge (LVDT))
- Supply frequency and
- Excitation voltage

After the automatic sensor recognition has been completed, the LEDs confirm the status.

D3/D4 = green	Sensor recognition successful	After successful recognition, the system is ready for use. The output signal is preset according to the factory setting, as well as a rough adjustment of the measuring signal.
D3/D4 = red	Automatic recognition is not suc- cessful	The parameters must now be set manually according to the respective instruction manuals of the sensor used. An automatic jump to the menu item Sensor parameter is done, see 5.3.3.

5.3.2 Signal

LED D2 = orange

This function allows you to adjust the type of output signal, e.g., 2 ... 10 V or 4 ... 20 mA.

Automatic recognition is available. For a load at the output of:

> 1 kOhm, voltage output 2 ... 10 V is set,

< 1 kOhm, current output 4 ... 20 mA is set.

5.3.3 Sensor Parameters

LED D2 = red flashing

With this function, you can set the parameters

- sensor type,
- supply frequency and
- excitation voltage

if the automatic recognition is not successful, or for special areas of use other settings may be necessary. These depend on the sensor model used. After manual setting of the sensor parameters, the adjustment of the system, see 5.3.4, is recommended.

Sensor mod	del	Measuring range	Sensor type	Supply frequen- cy	Excitation voltage
DTA-1x		±1 mm		5 kHz	
DTA-3x		±3 mm		5 kHz	
DTA-5x		±5 mm		5 kHz	
DTA-10x		±10 mm	LVDI	2 kHz	
DTA-15x		±15 mm		1 kHz	
DTA-25x		±25 mm		1 kHz	
LDR-10		10 mm		21 kHz	
LDR-25		25 mm		13 kHz	550 mV
LDR-50		50 mm		9 kHz	
LVP-3		3 mm		18 kHz	
LDR-14	With 8 mm drawbar	14 mm	LDR	23 kHz	
	With 10 mm drawbar	14 11111		23 kHz	
LVP-25	With 8 mm drawbar	05		16 kHz	
	With 10 mm drawbar	25 mm		16 kHz	

Fig. 53 Sensor models and sensor parameters

5.3.4 Adjustment

LED D2 = green

At the menu Settings > Adjustment, you can use either a two-point adjustment or a Zero-point adjustment. In this menu, the controller can also be reset to the factory settings.

Two-point adjustment	Here you can set any 2 points within the measuring range and the corresponding
	signal values.
Factory settings	The controller can be reset to the parameters stored by default, see A 2.
Zero-point adjustment	This is a special case of a two-point adjustment and provides the best performance
	for the measuring system. The first of the two points is the electrical zero point at
	which a differential sensor shows the highest stability on principle.

Fig. 54 Graphic Two-point adjustment

Fig. 55 Graphic Zero-point adjustment

5.4 Menu Structure

Legend of the menu structure ¹				
0	LED orange			
	LED orange flashing			
G	LED green			
\	LED green flashing			
R	LED red			
	LED red flashing			
	LED off			
SMR	Start of measuring range			
MMR	Mid of measuring range			
EMR	End of measuring range			

Fig. 56 Legend of the menu structure

1) For pages 51 to 58

Fig. 57 Menu structure for the MSC7401 / 7802 / 7602 controllers induSENSOR DTD / MSC7xxx

5.4.1 Two-point Adjustment

1) Position X_2 must be > 10 % of the measuring range away from X_1 . Fig. 58 Menu structure for the MSC7401 / 7802 / 7602 controllers, adjustment mode: Two-point adjustment

1) Position X_2 must be > 10 % of the measuring range away from X_1 .

induSENSOR DTD / MSC7xxx

5.4.2 Zero-point Adjustment

induSENSOR DTD / MSC7xxx

5.4.3 Example A: Sensor Parameter Adjustment: DTA-5G8, Channel 1

Press the MENU button for 3 sec.

After switching on, the sensor is automatically identified. If the recognition was successful, this color code is displayed and you can skip example A.

Output situation: sensor is not automatically recognized.

Press button 2x.

Menu point Sensor Parameter, see 5.3.3

Confirm by pressing the ENTER **button**.

Sensor type: LVDT; with 🚹 🖳 the selection can be changed here.

Confirm by pressing the ENTER **button**.

Frequency: 5 KHz; with 🚺 🞚 the selection can be changed here.

Confirm by pressing the ENTER **button**.

Excitation voltage: 550 mV; with 🚺 🖳 the selection can be changed here.

Confirm by pressing the ENTER button.

5.4.4 Example B: Signal Output Adjustment: 2 ... 10 V, Channel 1

Press the MENU button for 3 seconds, if you are not yet in the menu.

Output situation: The sensor parameters are already set; depending on the approach, LED ${\rm D4}$ is green or switched off.

Menu point: Signal, see 5.3.2; in delivery state, the electronics works with automatic load recognition; depending on the output load, the LED D4 is red (4 ... 20 mA) or orange (2 ... 10 V). If the automatic settings suits you, you can cancel example B here.

Confirm by pressing the ENTER **button**.

Voltage output

Confirm by pressing the ENTER **button**.

2 ... 10 V; with $\boxed{1}$ $\boxed{1}$ the selection can be changed here.

Confirm by pressing the ENTER **button**.

Output situation: The sensor parameters are already set; depending on the approach, LED D4 is green or switched off.

5.4.5 Example C: Adjustment via Zero-point Adjustment, Channel 1

5.4.6 Example D: Adjustment via Two-point Adjustment, Channel 1

Fig. 61 Example Two-point adjustment

5.5 **Multi-Channel Operation**

When operating the MSC7401 / MSC7602 / MSC7802 models, multi-channel operation is possible.

- For multi-channel operation, a distance of at least 100 mm between the respective sensors is recom-1
- mended.

Fig. 62 Multi-channel operation of 2 sensors

5.5.1 Operation on the RS485 Bus with Multiple Channels

The connection to the RS485 bus enables to directly read out the measurement values, see A 4.

The respective addresses can be individually set from 1 ... 126.

NOTICE

Please avoid in each operating mode using the same addresses multiple times on the bus.

> Data collision / System crash

With the MSC7401 and MSC7802 models, the addresses can exclusively be set via software, see A 3. The MSC7602 model in addition enables to set the address via a DIP switch, see Fig. 63.

The MSC7602 and MSC7802 2-channel variants hold a special status.

When the addresses are firmly assigned via DIP switch, see Fig. 64, always both addresses are set, e.g., channel 1 = address 100 \rightarrow channel 2 = address 99.

However, if the addresses are assigned via the sensorTOOL, see Fig. 64, the addresses can be set individually. But channel 1 only allows even address values while channel 2 only allows odd address values. If an entry is incorrect, the addresses are automatically set to the next higher even address or the next lower address.

- Please note that the transmission frequency per channel is reduced as the number of participants on
- the bus increases, as all channels have to be queried in series. Per channel, the duration of a message (query and response) is approx. 3 ms with 256,000 baud.

When using the sensorTOOL program on Windows, a maximum data rate of only 12 ms per message is possible.

The maximum number of participants (incl. master) on a bus line is 64. Depending on the length of the line and environmental conditions, an external terminating resistor may be required.

Fig. 63 DIP switch on the MSC7602 for multi-channel operation

Add	ress	Switch setting						
Sensor 1	Sensor 2	S1	S2	S3	S4	S5	S6	Value binary
126 ¹²	125 ¹²	OFF	OFF	OFF	OFF	OFF	OFF	000000
2	1	ON	OFF	OFF	OFF	OFF	OFF	000001
4	3	OFF	ON	OFF	OFF	OFF	OFF	000010
6	5	ON	ON	OFF	OFF	OFF	OFF	000011
8	7	OFF	OFF	ON	OFF	OFF	OFF	000100
118	117	ON	ON	OFF	ON	ON	ON	111011
120	119	OFF	OFF	ON	ON	ON	ON	111100
122	121	ON	OFF	ON	ON	ON	ON	111101
124	123	OFF	ON	ON	ON	ON	ON	111110
126	125	ON	ON	ON	ON	ON	ON	111111

Fig. 64 Address assignment on the induSENSOR MSC7602

1) Factory settings

2) The address can be set using the sensorTOOL, see A 3.

Please note that the bus master requires an individual address. With the bus master from MICRO-EPSI-LON MESSTECHNIK (e.g., sensorTOOL, IF1032 or IF2030), this address is always 1.

This is how max. 62 single-channel or 31 dual-channel controllers can be operated on the RS485 bus.

5.5.2 Synchronization and Installation of Multiple Channels

MSC7602 model

If the minimum distance of \geq 100 mm, see 5.3, is impossible, the MSC7602 model in addition offers the possibility to synchronize the supply frequency of the sensors. This significantly reduces or eliminates cross-talking between the channels, which strongly depends on the sensor used and the distance or arrangement to one another.

The following prerequisites/restrictions apply for sync operation:

- All synchronized sensors must be operable with the supply frequency of the master sensor, see 5.3.3.
- In sync mode, no automatic sensor recognition is possible with the slave.
- In sync mode, the slave channel must be set to the frequency of the master.
- The synchronization settings are not possible via the sensorTOOL, see A 3.
- Synchronization is only possible with a frequency response set to \geq 50 Hz.

The respective synchronization modes can be set via DIP switches:

	Switch setting		Operation		
	S1	S2	Sensor 1	Sensor 2	
Address Sync	Off 1	off 1	independent	independent	
	off	on	Master	Slave	
123456 12	on	off	Slave	independent	
	on	on	Slave	Slave	

Fig. 65 DIP switch on the induSENSOR MSC7602 for synchronization

1) Factory settings

Fig. 66 Example of synchronization induSENSOR MSC7602

MSC7802 model

The MSC7802 offers restricted synchronization possibilities. If these are necessary in the application, please contact Micro-Epsilon Messtechnik GmbH & Co. KG.

6. Service, Repair

If the controller or the sensor are defective, please send in the affected parts for repair or replacement. If the cause of a fault cannot be clearly identified, please send the entire measuring system to: MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Koenigbacher Str. 15 94496 Ortenburg / Germany

Tel. +49 (0) 8542/ 168-0 Fax +49 (0) 8542/ 168-90 info@micro-epsilon.com www.micro-epsilon.com

7. Disclaimer

All components of the device have been checked and tested for functionality in the factory. However, should any defects occur despite careful quality control, these shall be reported immediately to MICRO-EPSILON or to your distributor / retailer.

MICRO-EPSILON undertakes no liability whatsoever for damage, loss or costs caused by or related in any way to the product, in particular consequential damage, e.g., due to

- non-observance of these instructions/this manual,
- improper use or improper handling (in particular due to improper installation, commissioning, operation and maintenance) of the product,
- repairs or modifications by third parties,
- the use of force or other handling by unqualified persons.

This limitation of liability also applies to defects resulting from normal wear and tear (e.g., to wearing parts) and in the event of non-compliance with the specified maintenance intervals (if applicable).

MICRO-EPSILON is exclusively responsible for repairs. It is not permitted to make unauthorized structural and / or technical modifications or alterations to the product. In the interest of further development, MICRO-EPSI-LON reserves the right to modify the design.

In addition, the General Terms of Business of MICRO-EPSILON shall apply, which can be accessed under Legal details | Micro-Epsilon https://www.micro-epsilon.com/impressum/

For translations into other languages, the German version shall prevail.

8. Decommissioning, Disposal

In order to avoid the release of environmentally harmful substances and to ensure the reuse of valuable raw materials, we draw your attention to the following regulations and obligations:

- Remove all cables from the sensor and/or controller.
- Dispose of the sensor and/or the controller, its components and accessories, as well as the packaging
 materials in compliance with the applicable country-specific waste treatment and disposal regulations of
 the region of use.
- You are obliged to comply with all relevant national laws and regulations.

For Germany / the EU, the following (disposal) instructions apply in particular:

- Waste equipment marked with a crossed garbage can must not be disposed of with normal industrial waste (e.g. residual waste can or the yellow recycling bin) and must be disposed of separately. This avoids hazards to the environment due to incorrect disposal and ensures proper recycling of the old appliances.

- A list of national laws and contacts in the EU member states can be found at https://ec.europa.eu/environment/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en.

Here you can inform yourself about the respective national collection and return points.

- Old devices can also be returned for disposal to MICRO-EPSILON at the address given in the imprint at https://www.micro-epsilon.de/impressum/.
- We would like to point out that you are responsible for deleting the measurement-specific and personal data on the old devices to be disposed of.
- Under the registration number WEEE-Reg.-Nr. DE28605721, we are registered at the foundation Elektro-Altgeräte Register, Nordostpark 72, 90411 Nuremberg, as a manufacturer of electrical and/or electronic equipment.

Appendix

A 1 Optional Accessories

Designation	Photo	Description		
PC7400-6/4		Power and output cable; length: 6 m, 4-core, open ends with ferrules, shielded, OD: 5.6 mm		
PC5/5-IWT		Power and output cable; connector M12x1, 5 pin, A-coding, length: 5 m, 5-core, open ends, OD: 5.6 mm, IP 67		
IF7001		Single-channel USB/RS485 converter for MSC7xxx		
You will find further information on IF7001 under: https://www.micro-epsilon.com/download/manuals/ass IF-7001de-en.pdf#zoom=Fit				

Description	Photo	Description
IF2030/PNET		Interface component to con- nect Micro-Epsilon sensors to PROFINET via RS422/RS485 interface, single-channel system with DIN-rail housing; software integration into PLC with GSDML file, certified according to PNIO V2.33
IF2030/ENETIP		Interface module for connect- ing Micro Epsilon sensors with RS422/RS485 interface to Ethernet/IP 1-channel system with DIN rail housing;
		Software integration into the PLC with EDS file; Certified according to Ethernet/IP CT16
IF1032/ETH	Sector Provide Sector S	Multi-channel analog/Ether- net-EtherCAT converter - three analog inputs - one RS485 (single channel) in addition with trigger input

Description	Photo	Description
MSC7602 connector kit		3 x DIN rail bus connector; ME22,5 TBUS 1,5/4P1S KMGY connector (Phoenix: 2201732)
		1x suitable mate plug for DIN rail mounting: MCVR 1.5/5- ST-3.81 (Phoenix: 1827156)

A 2 Factory Settings

The controller is assigned with the following parameters by default:

- Frequency response: 50 Hz, only adjustable via sensorTOOL software, see A 3.
- Language: German
- Automatic recognition of customer signals
- Automatic sensor recognition

Upon successful recognition:

- Start of measuring range (plunger pulled-out): ~2 V or 4 mA
- Mid of measuring range (electric zero): ~6 V or 12 mA
A 3 Software

sensorTOOL gives you a documented software that can be used for setting the sensors, for demonstration purposes or for quick visualization of the measurement data.

You can find it online at https://www.micro-epsilon.de/download/software/sensorTOOL.exe.

A 3.1 **Controller Search**

- Connect the controller to a free USB port of your PC (e.g. via the IF7001) and connect the power supply.
- Start the sensorTOOL program.
- In the drop-down-menu, set the sensor group to induSENSOR and the sensor type to indu-SENSOR MSC7xxx.
- Click on the button with the magnifyling glass icon.

All available controllers/channels will now be displayed in the Search Results (x) overview.

SensorTOOL 991.7.0.1571

sensorTO English Search Results (1) Connections ÷ MSC7401 @ COM7, 256000 Baud, Address(RS485) 126 Raw Parameter View Sensor group induSENSOR Parameters Start Data Acquisition Sensor type: SensorOnMEbus Sensor type Serial number controller: 1205 Configure baudrate induSENSOR MSC7xxx Software version: 1 0h Scan Options Search serial interfaces Quick scan RS485 Enable logging Single sensor DAQ mode Load sensor protocol 0 Ready m ~ 🗋 🕕

Fig. 67 First interactive site after calling the sensorTOOL

٥

×

A 3.2 Configure Baudrate

Click on the Configure baud rate, see Fig. 67, button to apply the basic settings for the serial interface, see Fig. 68, click on Start Data Acquisition or on the controller icon, see Fig. 67, to apply other settings and start the data acquisition, see A 3.4.

🔍 Change serial configur	ation	×
Serial configuration		
Controller name Sensor name Serial number (controller) COM-Port Baud rate	MSC7401 induSENSOR M 1205 COM7 255000	3C7401
Sensor address	126	
New serial configuration	n	
Baud rate	256000	~
Sensor address	126	
Update serial configuration	Cancel	ccept

Fig. 68 Window Change serial configuration - sensorTOOL

Set the baud rate to 256,000.

A sensor address can be assigned for the sensor.

Please observe the DIP settings of MSC7602, see Fig. 64.

3.3 Menu	Settir	ngs							
3.3.1 Gener	ral								
sensor IOOL 991.7.0.15/1								sensorTO	
Connections	0	Measurement	Single Valu	e \delta	Settings	(j)	Info		English
MSC7401 Port number: Baud rate: Sensor Address: Serial number controller: Software version: → Disconnect	COM7 256000 126 1205 1.0b	•	Sensor setup Sensor model Excitation frequency (H2): Excitation voltage (mV):	7: DTA-3G8 5000 550	>	Auto detect sen	sor model		
Menu		•							
General Output Adiustment									
			Sensor Recognition After power on, the electronics at After a successful recognition, th Instructions Instructions Instructions are incorrect, execu - if the values are incorrect, execu - if the values are incorrect, execu - if the model is not listed, contact Tip Please note that changing the see	tomatically detects sensor model, the i perating instruction te the automatic sen t Micro-Epsilon, plea nsor model overwrite	the sensor. associated excitation is. sor recognition manu ise. es all manually set pa	frequency and the e ually or select the ser rameters.	xcitation voltage are set au nsor model in the drop dov	iomatically. vn menu.	
Ready									m ~ 🗋

Fig. 69 View Settings - General

Sensor setup	Sensor model	1 - 6: DTA-xD oder 7 - 10: DTA-xG8 127: user defined DTA 129 - 131, 133: LDR-x 132: LVP-25 255: user defined LDR 0: unknown sensor	
		Automatic recognition of sensor model	
	Excitation frequency (Hz)	1000 2000 5000 8000 9000 10000 12000 13000 16000 18000 21000 23000 25000	Only with user-defined sensor setting
	Excitation voltage (mV)	550 350 150 75	

Three options for sensor configuration:

- Automatic sensor recognition, see 5.3.1
- Model setting
- User-specific sensor setting
- Please note that automatic sensor recognition is merely a support feature. Successful recognition can-
- I not be guaranteed on account of tolerances. As such, the recognition result must always be checked.

Sensor recognition

After switching on, the controller automatically identifies the sensor.

After successful recognition, the sensor model, the associated excitation frequency and the excitation voltage are automatically set.

Check the values based on the operating instructions, see 5.3.3.

Fields with gray background require a selection.

If the values are not correct, carry out the automatic sensor recognition manually or select the sensor model in the drop down menu.

Fields with dark border require entry of a value.

- If the sensor model is not listed in the drop down menu, please contact Micro-Epsilon.
- Please note that changing the sensor model overwrites all manually set parameters.

L

Fig. 70 View Settings - Output

Analog output	
Output range	2.0 V 10.0 V 🔹
Frequency response	50 Hz 🔻

Fig. 71 Settings - Analog output

Analog output	Output range	Automatic / 0.0 V 10.0 V / 2.0 V 10.0 V / 0.0 V 5.0 V / 0.5 V 4.5 V / 4.0 mA 20.0 mA / 0.0 mA 20.0 mA / 0.0 mA 10.0 mA	Description, see 5.3.2
	Frequency response	20 Hz 50 Hz 100 Hz 200 Hz 300 Hz	-

If automatic is selected under Analog output > Output range, the output load is analyzed automatically after the electronics are switched on.

Depending on the result, 4 ... 20 mA or 2 ... 10 V is output.

Alternatively you may set the output range manually via the drop down menu, see Fig. 71.

Frequency response:

In order to achieve an optimal resolution, it is recommended to reduce the frequency response as much as possible.

Please note that a reduced frequency response also involves a reduced measurement dynamics.

Fields with gray background require a selection.

Fields with dark border require entry of a value.

A 3.3.3 Adjustment

There are two possible settings in the Adjustment menu:

- Two-point adjustment
- Zero-point adjustment

A 3.3.3.1 Two-point Adjustment

Connections	0	Measuremen	t @	Single Value	8	Settings	(i)	Info			S	ensorTC	English
MSC7401 Port number: Boud rate: Sensor Address: Sensor Address: Sensor number controller: Software version: → Disconnect	COM7 256000 126 1205 1.0b	◎ <	Two-point adju	stment Step 1: Move target Analog output at X ☑ Use mm scaling. Target position (%); ustment diagram	to XI I (V or mA): Set XI to (mm): n/a		2,000 0 3,000 0 Accept X1			Step : Outpu Abso Target	t: Move target to X2 tt ute position X2 ~ position (%); n/a		10,000
Menu		•		107	411	-100 33 3.00	7% mm			-105 % -105 %		2.007	
			Instructions - Before sens- - Start the sen - Next more t - Enter the co - Repeat this Tip Optionally, ye	or adjustment, please ens sor adjustment with the he target to the desired p responding output value procedure for the second ou may enter the associat	ure that the basic start icon. osition X1. e. Click "Accept X1 position X2. ed millimeter value	: setup was execute ". es which can be fo	ed (sensor configura	ation, output signal) and ment and the designatio	that the target can be positioned accordingly n custom.				•
Ready													m v 🗋

Please make sure before the adjustment that the basic settings were carried out (sensor configuration, output signal) and that the target can be positioned accordingly.

Start the sensor adjustment via the 🜔 button.

Then move the target to the desired position X₁.
 Enter the corresponding output value. Click Accept X₁.

Fig. 73 View 2 Two-point adjustment

Repeat this process for the second position X₂.

Fig. 74 View 3 Two-point adjustment

• Optionally, you can enter the associated millimeter values which can be found under Measurement and the additional designation Custom ¹, see Fig. 78.

1) Sensor designation, e.g., DTA-3G8 Custom

The chart is divided into 3 areas:

Green	Taught-in range, limited by X_1 , X_2 and the associated output signals.
White	Usable range outside the taught-in range
Red	Unavailable range

A 3.3.3.2 Zero-point Adjustment

Fig. 75 View 1 Zero-point adjustment

- Please make sure before the adjustment that the basic settings were carried out (sensor configuration, output signal) and that the target can be positioned accordingly.
- Start the sensor adjustment via the Start button.
- Then move the target to the zero point X_0 (target position = 0 %)
- Enter the desired output value for the midrange and accept it by clicking the button $Accept X_0$.

Fig. 76 View 2 Zero-point adjustment

- Now move the target inside the midrange to point X_{2} .
- Also enter the desired output value there and accept it by pressing the button Accept X₂.

Fig. 77 View 3 Zero-point adjustment

The entire measuring range is now symmetrically arranged around the zero point.

- Optionally, you can enter the associated millimeter values which can be found under Measurement
- **I** and the additional designation Custom¹.

The chart is divided into 3 areas:

Green	Taught-in range, limited by X_0, X_2 and the associated output signals.
White	Usable range outside the taught-in range
Red	Unavailable range

1) Sensor designation, e.g., DTA-3G8 Custom

A 3.4 Measurement Menu

To check your measurements, a simple data acquisition is available. Apply your desired settings before initial operation, see A 3.3.

Fig. 78 View Measurement menu

MSC7401	0
Port number:	COM7
Baud rate:	256000
Sensor Address:	126
Serial number controller:	1205
Software version:	1.0b
\rightarrow Disconnect	

By clicking the Disconnect button you return to the controller search, see Fig. 67.

Fig. 79 View Disconnect

A 3.4.1 Data Acquisition

Start the data acquisition by clicking the Start button, see Fig. 80.

The acquisition is completely restarted and the record stopped before is deleted.

Stop the data acquisition by clicking the Stop button, see Fig. 81.

Data Acquisition	0	

Fig. 80 Start Fig.

Fig. 81 Stop

A 3.4.2 Signal Processing

Fig. 82 Signal processing

You can select the following options for signal processing:

Measurement	Signal processing	Subsample	Disabled	Deactivated; basic settings
			Sample-based	Number of samples is adjustable, every xth measurement is recorded.
			Time-based	Time-based; time can be set in milliseconds ¹
		Trigger	Disabled	Deactivated; basic settings
			Continuous	Manual trigger
			One-shot (sample-based)	Sample can be set; records the signal course according to the set samples; the more samples, the longer the course
			One-shot (time-based)	Milliseconds can be set; records the signal course according to the time set
		Master	Master now	Sets the master, see Fig. 84.
			Reset	Resets the master

Fields with gray background require a selection.

Fields with dark border require entry of a value.

1) For example every 5000 ms: The signal course displayed is updated after this period has elapsed.

A 3.4.3 CSV Output

CSV Output					
CSV Settings					
Format	Comma	\sim			
Separator	Semicolon	\sim			
Split into files	100000 ≑ lines	\sim			
00381\AppData\Local\Micro-Epsilon\SensorTool					
Open Explorer					

Fig. 83 CSV output

	-	Click this button to st	art acquiring the mea	surement data.
		Click this button to se	ave the currently selec	cted measurement value.
Measurement		CSV output	Point / Comma	

 Measurement
 CSV output
 Format
 Point / Comma

 Separator
 Comma / Semicolon / Tabulator

Fields with gray background require a selection.

Fields with dark border require entry of a value.

Name	Show or hide signal curves of the sensors used.
Color	Change the color settings of the single signal courses.
Mastering	By activating the Mastering checkbox you can manually enter the master value. Master now in the Measurement > Signal Processing menu in the Master tab menu sets the master value, see Fig. 82.
Unit	Selection of the output to be displayed. The outputs are set before in the Settings menu under Output / Output range and Adjustment.
Number of digits	0 - 12

A 3.4.4 Description Data Acquisition Table

Fig. 84 Description data acquisition table

A 3.5	Single	e Value M	lenu								
् sensorTOOL 991.7.0.1571										-	ø ×
R										sensorTOO	L WE
Connections	∞ Me	easurement 🚳	Single Value	Settings	Info						English 🛇
MSC7401 Port number: Bud rate: Sensor Address: Serial number controll Software version: → Disconnect	COM7 256000 126 er: 1205 1.0b	<	DTA-	-3G8 Custo	om						
Data Acquisition	Mater			10.500	0 V			-0.0	0015	m	
1		Name	Color	Current value	Ma	Мак	Peak-to-peak	Mastering	Unit	Number of digits	
Format Separator	Point ~ Semicolon ~	DTA-3G8	m 📕	- 0.0015	-0.0015	-0.0015	0.0000		m	4	0
365\AppData\Local\Micro-Ep Open Exp	silon\Sensor-Tools										

Fig. 85 Single value menu

The following settings have an effect on this display:

- Output: Analog output, see A 3.3.2.
- Adjustment: Two-point adjustment, see A 3.3.3.1 and zero point, see A 3.3.3.2

A 3.6 Info	Menu					
🔍 sensorTOOL 991.7.0.1571						- 0 ×
A						sensorTOOL
Connections	Measure	ement 💿 Single Value	Settings	1 Info		English 🛇
MSC7401 Port number: Baud nate: Sensor Address: Serial number controller Software version: → Disconnect	COM7 256000 126 n 1205 1.0b	Controller information Sensor type: Article Number: Controller name: Option: Serial Number: Software Version: Diagnostic Information No Information available	induSENSOR MSC7401 4106145 MSC7401 0 1205 1.0b	Sensor Information DTA-3G6 Article Number: Offset: Messuring range: Serial Number: Unit: DTA-3G6 Custom Article Number: Offset: Messuring range: Serial Number: Unit:	0 0 11 0 V 0 6 0 0 8 0 0 mm	Copy to dipboard
		Factory reset				Export settings Import settings
Ready					-1 (ERD FI	

This window provides the current overview of the controller information, sensor information, diagnostic information and the currently connected sensor.

When you click the Disconnect button, the menu jumps back to the sensor TOOL start page, see Fig. 67.

Clicking the Copy to clipboard button copies the information and settings for the selected controller to the clipboard.

By pressing the Factory reset button, you can restore the factory settings.

 $\tt Export \ settings$ opens the explorer to store the setting values in a default file *.csv on the PC.

 $\tt Import \ settings$ opens the explorer to import the setting values from a default file *.csv on the PC.

L

A 3.7 Multi-Sensor DAQ Mode

The sensorTOOL also offers the possibility to output the data from several channels of the induSENSOR DTD / MSC7xxx series.

- Please note that the RS485 interface is a serial bus.
- Even if the measured values are output simultaneously in sensorTOOL, they are recorded with a time delay.

To output the data of several bus participants into one graph, please proceed as follows:

Search for the controller via the sensorTOOL program, see A 3.1.

Please note that the checkbox Quick scan RS485 must be deactivated, see Fig. 87, to find multiple channels.

sensorTOOL 1.7.0.102			– 🗆 ×
			UE
			SENSORIUUL MICRO-EPEL
			English 💟
Connections	a <	Search Results (4)
		MSC7602 Sensor 1 @ COM3, 256000 Baud, Address(RS485) 124	Raw Parameter View
induSENSOR	~	Parameters	
Sensor type		Sensor type: SensorOnMEbus (0)	Start Data Acquisition
induSENSOR MSC7xxx	~	Serial number controller: 1004	Configure baudrate
Scan Options		Software version: 1.1a	
Search serial interfaces		MSC7602 Sensor 2 @ COM3 256000 Baud Address(IPS485) 123	Dave Daramatar Viace
Quick scan RS485	_	Parameters	
Enable logging		Sensor type: SensorOnMEbus (0)	Start Data Acquisition
00	ensor (Serial number controller: 1004	Configure baudrate
L L		Software version: 1.1a	
Single sensor DAQ mode	~	MSC7602 Sensor 1 @ COM3 256000 Baud Address(BS485) 120	Daw Darameter View
		Parameters	
Load sensor protocol	×	Sensor type: SensorOnMEbus (0)	Start Data Acquisition
		Serial number controller: 1006	Configure baudrate
		Software version: 1.1a	
		MSC7602 Sensor 2 @ COM3, 256000 Baud, Address(RS485) 119	Raw Parameter View
		Parameters	Start Data Acquisition
		Sensor type: SensorOnMEbus (0)	
		Serial number controller: 1006 Software version: 1.1a	Configure baudrate
Ready			mm v 🗋 🗊

Fig. 87 First interactive site after calling the <code>sensorTOOL</code>

- ▶ If not already done, configure each individual channel, see A 3.3 and then return to the first interactive page after calling sensorTOOL (Search Results), see Fig. 87.
- Now enable the Multi sensor DAQ mode.

Then enable the individual checkboxes Use sensor in MULTI-DAQ of the respective channels.

sensorTOOL 1.7.0.102		- 0 ×
		sensorTOOL
		English 🛇
Connections	Search Res	ults (4)
	MSC7602 Sensor 1 @ COM3, 256000 Baud, Address(R5485) 124	Raw Parameter View
induSENSOR V Sensor type induSENSOR MSC7xxx V	Parameters Sensor type: SensorOnMEbus (0) Serial number controller: 1004 Software version: 1.1 a	Start Data Acquisition
Scan Options	Use sensor in MULTI-DAQ	
Curra San Koles Enable logging	MSC7602 Sensor 2 @ COM3,256000 Baud, Address(R5485) 123 Parameters Sensor type: SensorOnMEbus (0) Serial number controller: 1004 Software version: 1,1a	Raw Parameter View Start Data Acquisition Configure baudrate
	Use sensor in MUITI-DAQ	
Load sensor protocol	MSC/602 Sensor 1 @ COM3, 25600 Bug, Address(E489) 120 Pranates Sensor type: Sensor Com/ABbus (0) Senial number controller: 1006 Software version: 1.1a @ Use sensor in MUIT-DAQ	Raw Parameter View Start Data Acquisition Configure baudrate
	MSC7602 Sensor 2 @ COM3, 256000 Baud, Address(RS485) 119	Raw Parameter View
	Parameters Sensor type: SensorOmMEbus (0) Serial number controller: 1006 Software version: 1.1a Add sensor to MUUT-DAQ	Start Data Acquisition
Ready		mm 🗸 🗋 🜖

Fig. 88 First interactive site after calling the <code>sensorTOOL</code> for the Multi sensor DAQ mode

In the Data Acquisition menu, see A 3.4, the data output of the selected channels is displayed.

rig. 09 Data Acquisition mena, main sensor DAQ me

connections weasurement	Single Value									English 💟	
MULTI_SENSOR	#1_L	DR-10		#1_	LDR-10 Cust	om		#2_LDR-10			
Data Acquisition ©	17.13	32 m/	2 mA 1.604 mm					4.520 V			
Trigger Subsample Master Disabled	#2_LDR-	10 Custom			#3_DTA-3G8		#	#3_DTA-3G8 Custom			
SV Setting Toront Sensitive Sensitive Sensitive Sensitive Sensitive Sensitive Sensitive Sensitive Sensitive Setting S	6.850				0.185 \	/	-	1.361 r	nm		
00381/AppData/Local/Micro-Epsilon/SensorTool	Name	Color	Fortsize	Current value	Ma	Max	Paalo to-paak	Mastering	Unit	Number of cight	
Open Explorer	LDR-10		3 😨	17.132	0.000	20.500	20.500		mA	3	
Ø •1.	LDR-10 Custom		3 2	1.604	- 3.750	2.656	6.406		nn	3	
₩ #2,	LDR-10		3 😨	4.520	4.469	10.500	6.031		v	3	
₩ #2.	LDR-10 Custom		3 0	6.850	-0.625	6.914	7.539		nn	3	
Cl #2	DTA-3G8		3 👽	0.185	0.184	1.728	1.544		v	3	
E1 **.											

The Single Value, see A 3.5, menu also displays the data as numerical value.

Fig. 90 Single value menu, Multi sensor DAQ mode

A 4 Communication via RS485 Digital Interface

A 4.1 General

These instructions tell you how to obtain digital measurement values from the induSENSOR MSC7xxx controller without the MICRO-EPSILON sensorTOOL.

The controller must be configured as per these Operating Instructions prior to direct digital communication.

A 4.2 Hardware Configuration

Fig. 91 Hardware configuration

A 4.3 Protocol

Name	Description	Format	Example
DA	Destination Address	1 byte	0x7E = Address: 126
SA	Source Address	1 byte	0x01 = Address: 1
New_Adr	New Address	1 byte	0x7C = Address: 124
FSC	Checksum	Sum without arithmetic	
		overflow; mod 256	

Fig. 92 Protocol example

DA and SA have to be different!

A 4.4 Commands

A 4.4.1 Identification

Send:	0x68	0x09	0x09	0x68	0x7E 1	0x01 ²	0x4C	0x30	0x33	0x5E	0x10	0x0	0x4A
	0xE6 ³	0x16											
Receive:	0x68	0x53	0x53	0x68	0x01 ²	0x7E 1	0x08	0x33	0x30	0x5E	0x10	0x00	0x4A
	0x01	0x00	0x63	0x10	0xA1	0xA7	0x3E	0x00	0x00	0x00	0x00	0x00	0x00
	0x00	0x00	0x00	0xE8	0x03	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
	0x00	0x00	0x00	0x00	0x00	0x00	0x2E	0xB2	0x21	0x00	0x00	0x00	0x00
	0x00	0x4D	0x53	0x43	0x37	0x34	0x30	0x31	0x20	0x20	0x20	0x20	0x20
	0x20	0x20	0x20	0x20	0x20	0x20	0x20	0x20	0x20	0x20	0x20	0x20	0x20
	0x20	0x20	0x20	0x20	0x20	0x20	0x20	0x01	0x16	0x6E 4	0x16		
Result:	Descri	ption			Format					Example			
	Article	number			Bytes 18 - 21:					4106145			
					4 bytes	s, uint32	, little er	ndian					
	Serial r	number			Bytes 3	30 - 33:				1000			
					4 bytes	s, uint32	, little er	ndian					
	Article	descrip	tion		Bytes 5	54 - 85:				MSC7401			
					32 byte	es, ASCI	I						

1) DA: 126

2) SA: 1

3) CH: Checksum Send: Bytes 5 - 13

4) CH: Checksum Receive: Bytes 5 - 87

A 4.4.2 Assign New Address

Send:	0x68	0x09	0x09	0x68	0x7E 1	0x01 ²	0x43	0x37	0x3E	0x7C ⁵	0x00	0x00	0x00
	0xB3 ³	0x16											
Receive:	0xE5												

Afterwards a reset is necessary. This can be done by sending the reset message or by disconnecting the controller from power supply.

```
1) DA: 126 \rightarrow 5) DA new: 124
```

2) SA: 1

```
3) CH: Checksum Send: Bytes 5 - 13
```

4) -

A 4.4.3 Reset

Send:	0x68	0x09	0x09	0x68	0x7E 1	0x01 ²	0x4C	0x30	0x33	0x5E	0xB0	0x00	0x01
	0x3D ³	0x16											
Receive:	0v68	0×04		0v68	0v01 ²	0v7E 1	0v08	0×33	0v30	0v5E	0vB0	0×00	0v01
neceive.	0,00	UNUA	UNUA	0,00	0.01		0,00	0,00	0,00	UNDL	UNDO	0,00	0701
	0x02 4	0xFB	0x16										

1) DA: 126

2) SA: 1

3) CH: Checksum Send: Bytes 5 - 13

4) CH: Checksum Receive: Bytes 5 - 13

Send:	0x10	0x7E 1	0x01 ²	0x4C	0xCB ³	0x16							
Receive:	0x68	0x0B	0x0B	0x68	0x01 ²	0x7E 1	0x08	0xAE	0x47	0x61	0x3F	0x00	0x00
	0x00	0x00	0x1C 4	0x16									
Result:	Descri	ption			Format			Examp	le				
	Unsca	led value	Э		Bytes 8	- 11:				0x3F61	47AE (1	iloat)	
					4 bytes,	float, lit	tle endi	= 0.88 V					
	Scaled	l value			Bytes 12 4 bytes,	2 - 15: , float, lit	tle endi	an		If this v roller w Otherw terpart will be setting the cor	alue is (vas not s vise, the of the a sent ac you ha htroller b	D, the co set up. digital nalog co cording ve done pefore.	ont- coun- output the e in
	Maxim	um spee	ed for da	ta trans	mission	(1x send	d + 1x r	eceive):	~3 ms	@ 256	.000 Ba	ud	

A 4.4.4 Get Measuring Value

1) DA: 126

2) SA: 1

3) CH: Checksum Send: Bytes 2 - 4

4) CH: Checksum Receive: Bytes 5 - 15

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Koenigbacher Str. 15 · 94496 Ortenburg / Germany Tel. +49 (0) 8542 / 168-0 · Fax +49 (0) 8542 / 168-90 info@micro-epsilon.com · www.micro-epsilon.com Your local contact: www.micro-epsilon.com/contact/worldwide/

X9751377-B032062HDR © MICRO-EPSILON MESSTECHNIK