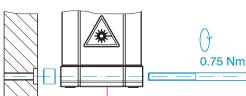

Sensor Mounting

The optoNCDT 1900 sensor is an optical system for measurements with micrometer accuracy. Ensure careful handling during installation and operation!

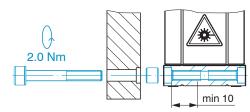
- Mount the sensor only to the existing through-bores (mounting holes) on a flat surface. Any type of clamping is not permitted.
- Mount the sensor using two M4 screws or the via the through-bores for M3 using the screws from the accessories.

Measuring Range, Start of Measuring Range

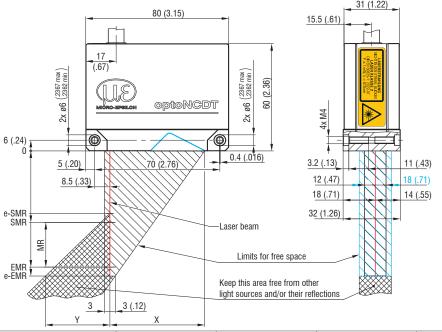

e-SMR Start of extended measuring range SMR Start of measuring range MMR Mid of measuring range


EMR End of measuring range e-EMR End of extended measuring range e-MR Extended measuring range

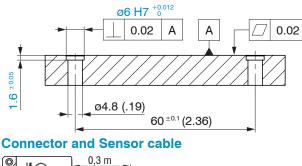
The digital values apply to distance values without zeroing or mastering.


Mounting

Bolt connection



Direct fastening


M4; ISO 4762, A2-70; Screwing depth min. 10 mm

Drawings, Free Space

MB	10	25	100	200
e-SMR	27.5	35	55	70
SMR	30	40	70	100
MMR	35	52.5	120	200
EMR	40	65	170	300
e-EMR	42.5	72.5	205	370
X standard MR	49	52	58	59
X with e-MR	49	53	59	60
Y standard MR	17	32	64	92
Y with e-MR	26	51	106	167

Dimensions in mm

Dimensional drawing, drilling pattern, mounting plate

Alignment by centering elements (optional)

ILD5500 with Pigtail

Pin assignment

Signal	Wire color PC1900-IE-x/OE-RJ45	Comments	
V ₊	Red	Power supply	11 30 VDC,
GND	Blue	Reference ground	typ. 24 VDC
Laser on/off +	Black	Switching input	Laser in the sensor is active if both
Laser on/off -	Violet	Switching input	pins are connected to each other.

Open end connections, PC1900-IE-x/OE-RJ45

Signal	Pin	Comments		1- 0
V ₊	1	Power supply	11 30 VDC,	0 0 7
GND	2	Reference ground	typ. 24 VDC	
Laser on/off +	7	Cuitabina inputa		
Laser on/off -	8	Switching inputs		2-

Pigtail connections on the sensor, 12-pin connector, M12, pin side pigtail cable connector

Supply voltage

Nominal value: 24 V DC (11 ... 30 V, P < 3 W).

Industrial Ethernet with PoE

Sensor supply is via a PoE-capable switch. Phantom powering (PoE) is possible via the

- PC1900-IE-x/RJ45 1
- PC1900-IE-x/OE-RJ45

1) PoE is not possible with PROFINET operation.

Industrial Ethernet without PoE

Sensor supply is via the PC1900-IE-x/OE-RJ45 cable.

11	Sensor pin	PC1900-IE-x/OE-RJ45 Color	Power supply
30 VDC ILD1900-IE	1	Red	V ₊
2	2	Blue	GND

As an alternative to PoE, the sensor can be supplied with the optional PS2020 power supply unit. Voltage supply only for measuring devices, not to be used for drives or similar sources of impulse interference at the same time. MICRO-EPSILON recommends using an optional available power supply unit PS2020 for the sensor.

- Only turn on the power supply after wiring has been completed.
- Connect the inputs Pin 1 and Pin 2 at the sensor with a 24V power supply.

Laser Safety

The optoNCDT 5500 operates with a semiconductor laser with a wavelength of 670 nm (visible/ red) or 658 nm (visible/red). Operation of the laser is indicated visually by the LED state on the sensor. During operation of the sensor, the pertinent regulations according to IEC 60825-1 on "Safety of laser products" must be fully observed at all times. The sensor complies with all applicable laws for the manufacturer of laser devices. Please observe national regulations, e. g., Laser Notice No. 56 for the USA.

- If both warning labels are covered over when the unit is installed, the user must ensure that supplementary labels are applied.
- Observe the national laser protection regulations.

Laser Class 2

The sensors fall within laser class 2. The laser is operated on a pulsed mode, the maximum optical power is ≤ 1 mW. The pulse frequency depends on the adjusted measuring rate (0.25 ... 10 kHz). The pulse duration of the peaks is regulated depending on the measuring rate and reflectivity of the target and can be 4 up to 3995 μ s.

Laser warning sign on I aser labels on the sensor cable the sensor housing

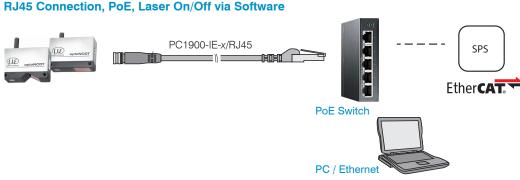
▲ CAUTION

▲ CAUTION

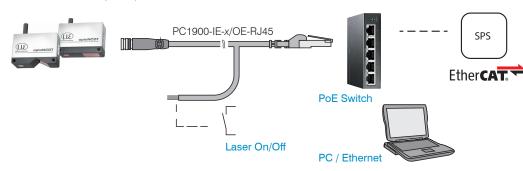
Laser radiation. Irritation or injury of the eyes possible. Close your eyes or immediately turn away if the laser beam hits the eye.

Laser Class 3R

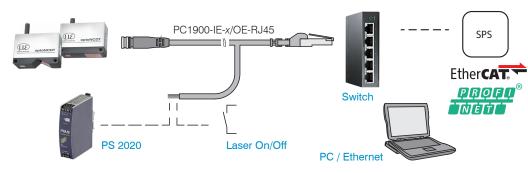
The sensors fall within laser class 3R. The laser is operated on a pulsed mode, the maximum optical power is ≤ 5 mW. The pulse frequency depends on the adjusted measuring rate (0.25 ... 10 kHz). The pulse duration of the peaks is regulated depending on the measuring rate and reflectivity of the target and can be 4 up to 3995 μ s.


Laser radiation. Irritation or injury of the eyes possible. Use suitable protective equipment and close your eyes or immediately turn away if the laser beam hits the eye.

Laser warning sign on Laser labels on the sensor cable the sensor housing


Accordingly, the following applies: The accessible laser radiation is harmful to the eyes. Looking directly into the laser beam is harmful to the eyes with laser class 3R devices. Reflections of shiny or mirroring surfaces are also harmful to the eyes.

Class 3R laser sensors require a laser protection officer. Mark the laser area recognizable and everlasting. During operation the laser area has to be restricted and marked.


Electrical Connections

RJ45 Connection, PoE, Laser On/Off via Hardware

RJ45 Connection, Supply via Optional Power Supply Unit, Laser On/Off via Hardware

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Koenigbacher Str. 15 • 94496 Ortenburg / Germany Tel. +49 (0) 8542 / 168-0 • Fax +49 (0) 8542 / 168-90

info@micro-epsilon.com • www.micro-epsilon.com Your local contact: www.micro-epsilon.com/contact/worldwide/

Operating Instructions optoNCDT 5500 EtherCAT **PROFINET**

Intended Use

The optoNCDT 5500 is designed for use in industrial and laboratory applications. It is used for measuring displacement, distance and position as well as in quality control and dimensional

The sensor must only be operated within the limits specified in the technical data, see operating instructions, Chap 3.3. The sensor must be used in such a way that no persons are endangered or machines and other material goods are damaged in the event of malfunction or total failure of the sensor. Take additional precautions for safety and damage prevention in case of safety-relat-

Warnings

Avoid unnecessary laser radiation to be exposed to the human body.

- Switch off the sensor for cleaning and maintenance.
- Switch off the sensor for system maintenance and repair if the sensor is integrated into a

Caution - use of controls or adjustments or performance of procedures other than those specified may cause harm.

Connect the power supply according to the safety regulations for electrical equipment. The supply voltage must not exceed the specified limits.

> Risk of injury, damage to or destruction of the sensor.

Avoid constant exposure of the sensor to splashes of water. Avoid exposure of sensor to aggressive media (detergents, cooling emulsions).

> Damage to or destruction of the sensor

Avoid shock and vibration to the sensor. Protect the sensor cable against damage.

> Damage to or destruction of the sensor, failure of the measuring device.

Control and Display Elements

a 		
State LED	Meaning	
Green	Measuring object within the measuring range	
Yellow	Measuring object in the mid of the measuring range	
Red	No distance value available, e.g. target outside the measuring range, too low reflection	
Yellow flashing, 1 Hz	Bootloader	
Yellow flashing, 8 Hz	Installation active	
State LED lights up (green, yellow or red) and briefly flashes yellow at intervals of approx. 1 sec.	Ethernet setup mode	state RUN/SF/MS ERR/BF/NS
Off	Laser switched off	
LED RUN/SF/MS	Meaning	Select
	depending on Industrial Ethernet operation (IE)	
LED ERR/BF/NS	Meaning	
	depending on Industrial Ethernet operation (IE)	
Select button	Meaning	
	Switching operating mode (with EtherCAT on Resetting to factory setting	ly)

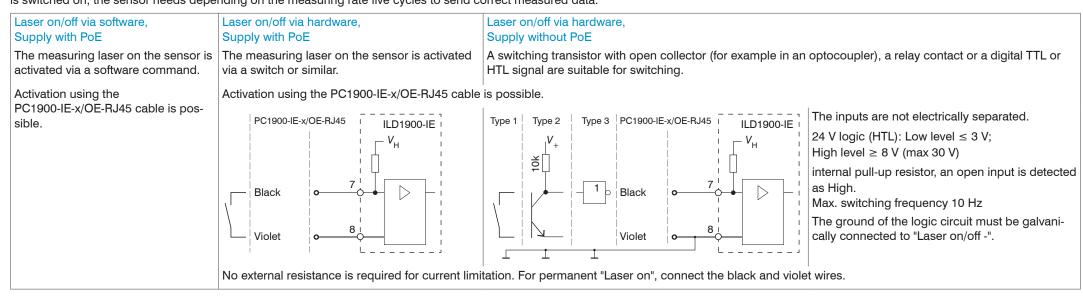
Quick Guide

Structure of the Components

Mount the sensor and connect the components to one another.

Initial Operation

Connect the sensor to a power supply if PoE is not used

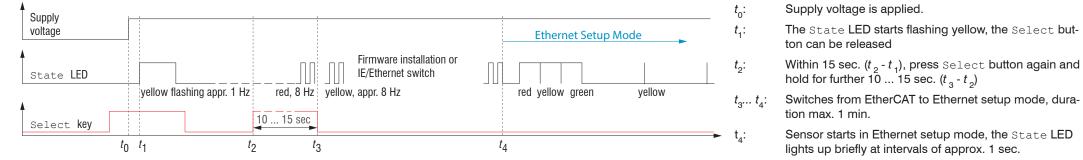

Operation via Web Interface

The sensors start with the last stored operating mode. Standard is Industrial Ethernet (IE). A web server is implemented in the sensor; the web interface displays, among other things, the current settings of the sensor. Operation is only possible while there is an Ethernet connection to the sensor.

	EtherCAT	PROFINET	
Ethernet setup mode	Ethernet over EtherCAT (EoE)	The optoNCDT 5500 with PROFINET has	
Switch to the Ethernet setup mode. Details can be found in section Switch between Industrial Ethernet Opera-	Parallel to the EtherCAT operation you can adjust the sensor. Enable the EoE in your PLC software.	I no IP address by default. The static IP address and the device name are assigned via DCP (Discovery and Configuration Protocol). The IP address and the device	
The standard IP address is 169.254.168.150. Note: As IP setting of the network card to which the sensor is connected, we recom-	Virtual Ethernet Port is a name in Twin-CAT®. Assign a MAC address and an IP address to the slave.	name can be assigned, e.g., via the TIA Portal software. Assign an IP address to the sensor.	
mend a static configuration with 169.254.168.1 as IP address and the subnet mask 255.255.0.0.		You can find an example of this in the appendix of the operating instructions.	

Turning on the Laser

The measuring laser on the sensor is switched on via a software command or a switching input. This allows to switch off the sensor for maintenance purposes or similar. Response time: after the laser is switched on, the sensor needs depending on the measuring rate five cycles to send correct measured data.



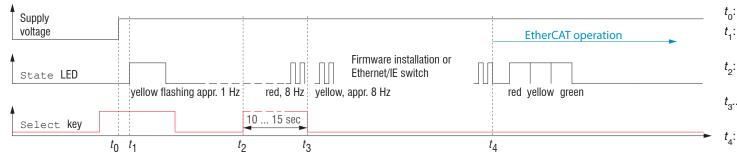
Switch between EtherCAT Operation and Ethernet Setup Mode

The sensor starts in the last stored operating mode. It is factory set to EtherCAT. Access via Ethernet is possible in the Ethernet setup mode.

Press and hold the Select button on the sensor before switching on the power supply on the sensor. Release the button again as soon as the State LED flashes yellow. Press the button again for approx. 10 to 15 seconds until the State LED flashes red.

Within the time t_2 ... t_3 the red flashing with 8 Hz starts after 10 seconds. The key must be released again after 15 seconds at the latest. When the Select key is released at the latest at time t_3 , the State LED starts to flash yellow at 8 Hz.

Flowchart for starting a sensor in Ethernet setup mode


After completion of the firmware installation/switch, the sensor reboots at time $t_{\rm A}$.

Switch between Ethernet Setup Mode and EtherCAT

The sensor starts in the last stored operating mode. With the select button, you can set the sensor to the EtherCAT mode.

Press and hold the Select button on the sensor before switching on the power supply on the sensor. Release the button again as soon as the State LED flashes yellow. Press the button again for approx. 10 to 15 seconds until the State LED flashes red.

Within the time t_2 ... t_3 the red flashing with 8 Hz starts after 10 seconds. The key must be released again after 15 seconds at the latest. When the Select key is released at the latest at time t_3 , the State LED starts to flash yellow at 8 Hz.

Supply voltage is applied

The State LED starts flashing yellow, the Select button can be released

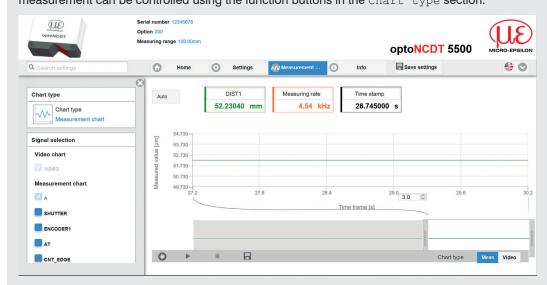
Within 15 sec. $(t_2 - t_1)$, press Select button again and hold for further 10 ... 15 sec. $(t_3 - t_2)$

Switches from Ethernet setup mode to EtherCAT, duration max. 1 min.

Sensor starts in EtherCAT operating mode.

Flowchart for starting a sensor in EtherCAT operation

After completion of the firmware installation/switch, the sensor reboots at time $\,t_{\,4}^{}.\,$


Proper Environment

- Protection class: IP67 (applies only when sensor cable is plugged in)
 Lenses are excluded from the protection class. Contamination of the lenses causes impairment or failure of the function.
- Temperature range
- Humidity: 5 ... 95 % (non-condensing)
- Operation: 0 ... +50 °C
 Storage: -20 ... +70 °C
- Ambient pressure: Atmospheric pressure

Access via Web Interface

- Start your web browser.
- Type the IP address of the sensor into the address bar.

Interactive web pages you can use to configure the sensor are now displayed in the web browser. The web interface does not guarantee real-time measurements. The currently running measurement can be controlled using the function buttons in the Chart type section.

In the top navigation bar, other functions (settings, measurement chart etc.) are available. The appearance of the websites can change dependent of the functions. Each page contains dynamic parameter descriptions and tips on completing the web page.

After parameterization, store all settings permanently in a parameter set so that they are available again the next time the sensor is switched on. To do this, use the <code>Save settings</code> button.

Positioning the Target

Position the target as centrally as possible within the measuring range.

The state LED on the sensor indicates the position of the target to the sensor.

LED	Color		Meaning
	Off		Laser beam is switched off.
	- 	Green	Measuring object within the measuring range
state	->	Yellow	Target is in the mid of measuring range.
		Red	No distance value available, e.g. target outside the measuring range, too low reflection

Saving the Settings, Continuing Industrial Ethernet Operation

Go to Settings > System settings > Load & Save or click the Save settings button.

The sensor now also saves the settings for use in Industrial Ethernet operation.

For sensors with operation mode EtherCAT:

Go to Settings > System settings > Boot mode. Select the entry Industrial Ethernet.

The sensor disconnects from the browser and boots automatically with the Industrial Ethernet firmware. The boot process can take up to one minute.

Alternatively, you can return to the Industrial Ethernet operation via the select button. Details can be found in section Switch between Ethernet Setup Mode and EtherCAT.

Continue working in your PLC environment.

You can find more information about the sensor in the operating instructions. They are available online at:

https://www.micro-epsilon.com/distance-sensors/laser-sensors/optoncdt-5500 or with the QR code at right:

